

Session 1

Overview of Hazardous and Noxious Substances

Dr Ann Zhang – Technical Adviser, ITOPF

Regional Workshop on the 2010 HNS Convention - Rome, Italy, October, 2014

Contents

- I. The Role of ITOPF
- II. What are HNS
- III. Risks
- **IV. Case Studies**

I Role of ITOPF – Introduction of ITOPF

ITOPF

- Not-for-profit organisation established in 1968
- Primarily funded by shipping industry (via P&I Clubs)
- Main role: advice on marine oil & HNS spills
- Based in London but provides a global service

I Role of ITOPF – members and associates

ITOPF

~ 95% world tankers

- 6,300 tanker owners & bareboat charterers
- 10,900 tankers, barges & OBOs -340 million GT

> 90% world fleet

- Owners of other types of ship (since 1999)
- 658 million GT of non-tanker shipping

I Role of **ITOPF** – spill attendance

- Attendance ~ 700 spills in 99 countries and regions
- Provide technical advice to promote effective response & cooperation
- Advise and monitor spill response, investigate damages via joint assessment
- Worldwide network of contacts, technical databases & library

I Role of ITOPF – Drills & Exercises

ITOPF

- Multi-national co-operation exercises within Regional Seas;
- Joint Exercises between 2 or more countries;
- Industrial, company drills and exercises

I Role of ITOPF – Training, workshop & Contingency Planning

ITOPF

- IMO Regional OPRC Workshops and Training Programmes
- National & local Authorities
- Contingency planning for industry and government

II What are Hazardous and Noxious Substances

In 2010 HNS Convention

to ensure maritime safety and prevention of pollution

(a) Carried on board a ship as cargo:

- (i) <u>Oils</u> in bulk, MARPOL 73/78 Annex I;
- (ii) Noxious liquid in bulk, MARPOL 73/78 Annex II;
- (iii) **Dangerous liquid** in bulk, **IBC Code**;
- (iv) Packaged goods listed in IMDG Code;
- (v) Liquefied gases in IGC Code;
- (vi) Liquid carried in bulk with a flashpoint ≤ 60°C;
- (vii) Solid bulk materials possessing chemical hazards covered by IMSBC;

(b) Residues from the previous carriage in bulk

include

- <u>all liquefied gases</u> in bulk;
- <u>bulk liquids</u> if there are potential safety, pollution or explosion hazards:

organic chemicals, e.g. methanol, styrene;

inorganic chemicals, e.g. acids, caustic soda;

persistent and non-persistent oils of petroleum origin;

vegetable and animal oils and fats

 <u>bulk solids</u> such as fertilizers, sodium and potassium nitrates, sulphur, some types of fishmeal;

NOT include

- most inert bulk solids, e.g. iron ore, grain, alumina, cement, etc.
- radioactive materials
- oil damages already covered under CLC, FUND conventions

III. Risks associated with Hazardous and Noxious Substances

- 1. Physical properties of HNS
- 2. Hazardous profiles of HNS
- 3. Risk assessment

1. Physical properties of HNS

Behaviour class	Density	Vapour Pressure		Solubility %	, 0
	(kg/m ³⁾	(Pa)	Gas	Liquid	Solid
Gas			<10		-
Gas/Dissolver		>3000	>10	-	
Evaporator				<1	-
Evaporator/Dissolver				>1	
Floater		<300		<0.1	<10
Floater/Evaporator	<1030		_		-
Floater/Evaporator/Dissolver		300-3000		0.1-5	
Floater/Dissolver					10-100
Dissolver		<10,000		>5	100
Dissolver/Evaporator		>10,000			
Sinker	>1023	-		-	<10
Sinker/Dissolver					10-100

1. Physical properties of HNS

III Risks of HNS

- 2. Hazardous profile of HNS
 - UN Globally Harmonized System (GHS) of Classification

Risks of HNS

- Hazardous profile of HNS 2.
 - UN Globally Harmonized System (GHS) of Classification

Classification

- GESAMP Hazard Evaluation (OECD, UN)

(for Chemical Substances Carried by Ship)

Acetic Acid

- Dissolver
- Severely corrosive
- Readily biodegradable

3. Risk assessment

- Risk and safety issues

Emergency response planning, exposure guidelines, evacuation

- Fate modelling

Likely fate and behaviour of the HNS;

Likely impacts on air and aquatic environment;

III Risks of HNS

Rank	Chemical	Rank	Chemical
1	Sulphuric acid	11	Styrene
2	Hydrochloric acid	12	Methanol
3	Sodium hydroxide / caustic soda	13	Ethylene glycol
4	Phosphoric acid	14	Chlorine
5	Nitric acid	15	Acetone
6	LPG/LNG	16	Ammonium nitrate
7	Ammonia	17	Urea
8	Benzene	18	Toluene
9	Xylene	19	Acrylonitrile
10	Phenol	20	Vinyl acetate

20 chemicals most likely to be involved in HNS incidents *Source: IMO OPRC-HNS/TG

165 million tonnes of chemicals (including petrochemicals) were transported, but **20** pose **highest risk**

IV Case Studies - HALDOZ, chemical tanker

1. Situation

- Chemical tanker HALDOZ (2,593 GT, 2007) spilled ≈ 104 MT styrene monomer within the port of Tarragona, Spain during loading on 3rd Feb. 2012
- Light polymerisation occurred on the hull of the vessel when styrene was in contact with water

2. Risk assessment

 ChemSIS model confirmed that 99% of the product will evaporate within hours after release; 1% is expected to dissolve but will eventually evaporate within 1 day.

ITOPF

3. Response

- 200 m boom for containment;
- Removal of the polymerised product in water

IV Case Studies - KEW BRIDGE, LPG tanker

1. Situation

- LPG tanker KEW BRIDGE (12,240 GT, 1983) ran aground on soft mud during monsoon rough seas, 14 Sept 2006.
- 8,798 tonnes of Butane cargo onboard;
- Each of the tanks were about 98% full, very little headspace for expansion;
- Salvage attempts affected by the monsoon;

2. Risk assessment

- Butane boils at ≈ -1°C;
- Temperature of the tank = -5°C, but increases 0.5 °C per day;

ITOPF

- Increased pressure in tank, Boiling Liquid Expanding Vapour Explosion;
- Cooling system was not functional;
- Close to local village

IV Case Studies - KEW BRIDGE, LPG tanker

ITOPF

1st stage response

- Modelling of temperature & pressure within tanks showed no uncontrolled release of gas from valves until Butane reached 15°C (≈ 30 days)
- Install secondary cooling system
- Implementation of a safety zone
- 146 MT of bunkers removed

2nd stage response

- Modelling showed removing ≈ 2000 tonnes of LPG would give enough headspace within tanks to allow gas to remain safe even if temperature reached ambient temp (35°C)
- Lightering operation: 2000 MT of butane removed by second LPG tanker
- Refloated during spring tide on 9th Oct. 2006

IV Case Studies - BARELI, container ship

TOPF

1. Situation

- Container ship BARELI (35,881 GT, 2004) ran aground 6nm off Nan Ri Island when approaching Fu Zhou Container Terminal, on 15th March 2012;
- Vessel back broken amidship, resulting in the release of ~ 100 MT HFO and the loss of 165 containers (80 with Dangerous Goods) overboard;

2. Risk assessment

- Lost cargo included highly toxic herbicides, insecticides and sodium hydroxide;
- Loose packages mixed with HFO, difficult to identify the nature of the product;
- Lost goods stranded in nearby villages, ransacked by villagers, difficult to set up exclusion zone;

IV Case Studies - BARELI: identifying dangerous goods

Response: Assess and prioritise the dangerous goods

- Manifest needs to be cross-referenced with Bay Plan to locate containers
- Information on hazards & handling procedures should be provided to salvors

IV Case Study - BARELI: container processing

Response: Recovery

- Retrieving floating and stranded cargos;
- Transport to designated area in terminal for temporary storage;
- External cleaning
- Customs clearance;

Response: Processing – should have coordinated by fully trained HAZMAT team

- *correct PPE, e.g. liquid tight suits, SCBAs, etc. should be worn at all times
- Repacking of intact cargo;
- Disposal of damaged cargo to appropriate facilities

Summary

- **Definition** of HNS within 2010 Convention
- What's covered and what's NOT

• Risks

- Physical properties
- Hazardous
 profiles
- risk assessment using modelling

Case studies

- Chemical tanker;
- LPG tanker
- Container vessel

Any Questions?

Dr Ann Zhang – Technical Adviser, ITOPF

www.itopf.com

Regional Workshop on the 2010 HNS Convention - Rome, Italy, October, 2014

Information Services

- Website & WebGIS www.itopf.com
- ITOPF publications Response Handbooks, TIPS Series 17 Topics published in English, French, Russian, Chinese and Spanish;
- Databases with spill statistics;
- ITOPF film series to download and watch on App;
- Country Profiles 160 maritime nations and regions;